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Abstract

A stable hybrid method for hyperbolic problems that combines the unstructured finite volume method with high-
order finite difference methods has been developed. The coupling procedure is based on energy estimates and stability
can be guaranteed. Numerical calculations verify that the hybrid method is efficient and accurate.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The hyperbolic equations involved in modeling aerodynamic, aeroacoustic, or electromagnetic wave
propagation remain a computational challenge both for academia and industry. In computational physics,
unstructured finite volume methods are widely used to handle complex geometries and nonlinear phenom-
ena. It is also clear that high-order finite difference methods are very efficient for essentially linear wave
propagation problems in smooth geometries.

Strict stability, which prevents error growth on realistic mesh sizes, is very important for calculations
over long times. Strictly stable unstructured finite volume methods and high-order finite difference methods
for both hyperbolic, parabolic and incompletely parabolic problems were derived in [1–7]. These methods
employ so called summation-by-parts (SBP) operators and impose the boundary conditions weakly, see
[6,8].

In this paper, we will discuss how to combine the finite volume method and the high-order finite differ-
ence method into a hybrid method. The finite volume method will mainly be used close to the wave source,
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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where complex geometries and nonlinear phenomena are important, while the high-order finite difference
method is ideally suited for the pure wave propagation part.

The coupling procedure will be based on energy estimates. Essentially, the whole procedure can be
described as away tomodify the dual grid in the finite volumemethod in such away that stability can bemain-
tained at the interface. Examples of other types of hybrid methods and approaches can be found in [9–17].

Section 2 presents the two numerical methods and the coupling procedure. Section 3 deals with the
numerical experiments, Section 4 discusses future extensions of the method and conclusions are drawn
in Section 5.
2. Analysis

As a model problem, we will consider the continuous hyperbolic system
ut þ Aux þ Buy ¼ 0; �1 6 x 6 1; 0 6 y 6 1 ð1Þ

with suitable initial and boundary conditions. A and B are constant symmetric matrices with k rows and
columns.

The computational domain will be divided into two subdomains. A so called edge-based unstructured
finite volume method (UFVM) will be used to discretize (1) on subdomain [�1,0] · [0,1] with an unstruc-
tured mesh while a high-order finite difference method (HOFDM) will be used on subdomain [0,1] · [0,1]
with a structured mesh, see Fig. 1.

The fact that the unknowns in the UFVM and the HOFDM are located in the nodes and can be
co-located at the interface is a key ingredient in the coupling procedure we will discuss below.

2.1. The edge-based finite volume method

The computational domain consists of non-overlapping elements and the unknown variables are stored
at the nodes of the mesh. For each node, the control volume that constitutes the dual grid is defined as a
West

North

East

South

y=1

x=1x=1

U V

Interface

y=0

Fig. 1. The hybrid mesh on the computational domain.
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polygon with its vertexes at the centers of gravity of the surrounding triangles (or quadrilaterals) and at the
midpoints of the sides, see Fig. 2(a).

Eq. (1) is integrated over each control volume Xi, which is surrounded by the surface oXi and we obtain,
o

ot

Z Z
Xi

u dx dy þ A
I
oXi

u dy � B
I
oXi

u dx ¼ 0; ð2Þ
by Green�s theorem.
In [6] it was shown that a semi-discrete approximation of Eq. (2) can be written,
ðPL � IkÞut þ ðQL
x � AÞuþ ðQL

y � BÞu ¼ 0; ð3Þ
or,
ut þ f½ðPLÞ�1QL
x � � Aguþ f½ðPLÞ�1QL

y � � Bgu ¼ 0; ð4Þ
where � is the Kronecker product. Ik is the k · k identity matrix. The discrete finite volume approximation
of u at the nodes is denoted u. It is a vector of lengthM = mk where m is the number of nodes. The elements
of u are arranged such that the first k elements are the discrete representation of the k variables in u at the
first grid point. The following k elements are the discrete representation of the k variables in u at another
grid point and so on. PL is a positive diagonal m · m matrix with the control volumes Xi on the diagonal
and QL

x and QL
y are almost skew-symmetric m · m matrices which represent the discrete approximation of

the convective flux integral in (2).
The matrices QL

x and QL
y have the components:
ðQL
x Þij ¼

Dyj
2

¼ �ðQL
x Þji; ðQL

x Þii62oX ¼ 0; ðQL
x Þii2oX ¼ Dyi

2
; ð5Þ

ðQL
y Þij ¼ �Dxj

2
¼ �ðQL

y Þji; ðQL
y Þii 62oX ¼ 0; ðQL

y Þii2oX ¼ �Dxi
2

. ð6Þ
For the definition of Dxj and Dyj, see Fig. 2. Moreover, Eqs. (5) and (6) imply that QL
x and QR

y satisfy
QL
x þ ðQL

x Þ
T ¼ Y ; QL

y þ ðQL
y Þ

T ¼ X ; ð7Þ
Fig. 2. The grid (solid lines) and the dual grid (dashed lines).
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where the non-zero elements in Y and X are Dyi and �Dxi, respectively, and correspond to the boundary
points.

The operators QL
x and QL

y satisfies a generalized SBP concept. By using (7) we obtain,
/TY/ ¼
X
i2oX

/2
iDyi �

I
oX

/2 dy; /TX/ ¼ �
X
i2oX

/2
iDxi � �

I
oX

/2 dx; ð8Þ
where /(x,y) is a smooth continuous function. For more details on the SBP properties of the finite volume
scheme, see [6].

The finite volume scheme described above requires a particular boundary treatment to obtain stability.
We will used the so called simultaneous approximation term (SAT) method where the boundary conditions
are imposed weakly. The SAT technique is a penalty procedure that can be used to specify outer boundary
conditions as well as treating block interfaces. We will not discuss the outer boundary treatment in detail,
only indicate its presence by adding a penalty term on the right-hand side of (3). For more details on the
weak treatment of boundary conditions, see [6].

The final semi-discrete form of (1) on subdomain [�1,0] · [0,1] can be written,
ut þ f½ðPLÞ�1QL
x � � Aguþ f½ðPLÞ�1QL

y � � Bgu ¼ SATL þ f½ðPLÞ�1ðEL
I Þ

TPL
y � � RLgðuI � vIÞ; ð9Þ
where SATL is the penalty term that imposes the outer boundary conditions weakly. uI and vI are vectors
which represent u and v (v is the discrete finite difference solution that will be presented below) on the inter-
face, respectively. EL

I is a projection matrix which maps u to uI such that uI ¼ ðEL
I � IkÞu. The non-zero

components of EL
I have the value 1 and appear at the interface. PL

y � RL is a penalty matrix that will be
determined below by stability requirements.

Example. The precise structure of EL
I depends on how u is organized. For unstructured grids, there are

many different ways of doing that. If the first l elements of u are located on the interface, we obtain a
projection matrix with the structure EL

I ¼ ½I ; 0� where EL
I has dimension l · m and the identity matrix I has

dimension l · l.
2.2. The high-order finite difference method

Consider the subdomain [0,1] · [0,1] with a structured mesh of n · l points. The finite difference
approximation of u at the grid point (xi,yj) is a k · 1 vector denoted vij. We organize the solution in
the global vector v = [v11, . . . ,v1l,v21, . . . ,v2l, . . . ,vn1, . . . ,vnl]

T. vx and vy are approximations of ux and uy
and are approximated using the high-order accurate SBP operators for the first derivative that were
constructed in [3,18,19]. The difference operators in the x and y direction on the right subdomain are
denoted ðPR

x Þ
�1QR

x and ðPR
y Þ

�1QR
y , respectively.

The semi-discrete approximation of (1) on subdomain [0,1] · [0,1] can be written,
vt þ PR
x

� ��1
QR

x

h i
� IRy � A

n o
vþ IRx � PR

y

� ��1

QR
y

� �
� B

� �
v

¼ SATR þ PR
x � PR

y

� ��1

ER
I

� �T� �
PR
y � RR

� �
ðvI � uIÞ; ð10Þ
where the sizes of the identity matrices IRx and IRy are n · n and l · l, respectively. SATR is the SAT penalty
term for the outer boundary conditions. ER

I is a projection matrix which maps v to vI, that is,
vI ¼ ðER

I � IkÞv. RR is a penalty matrix that will be determined below by stability requirements.
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Example. With the organization of v given above we have vI = [v11, . . . ,v1l]
T and consequently ER

I ¼ ½I ; 0�,
where ER

I has dimension ll · nl and the identity matrix I has dimension l · l.

Remark. Note that uI and vI in (9) and (10) are co-located at the interface. That is absolutely essential for
the accuracy of the hybrid scheme. It will be shown below that it is also necessary for stability.

Note that the operators ðPR
x Þ

�1QR
x and ðPR

y Þ
�1QR

y are SBP operators since matrices PR
x and PR

y are
symmetric and positive definite and the matrices Qx and Qy are nearly skew-symmetric, that is:
QR
x þ QR

x

� �T ¼ DR
x ¼ diagð�1; 0; . . . 0; 1Þ;

QR
y þ QR

y

� �T

¼ DR
y ¼ diagð�1; 0; . . . 0; 1Þ;

ð11Þ
where DR
x and DR

y are n · n and l · l matrices, respectively.
In this paper, we will use the Kronecker product rules (A � B)(C � D) = (AC) � (BD) and (A � B)T =

AT � BT. Applying these rules to the interface terms in (9) and (10) yields:
ðPLÞ�1 EL
I

� �T
PL
y

h i
� RL

n o
¼ ½ðPLÞ�1 � Ik� EL

I

� �T � Ik
h i

PL
y � RL

� �
;

PR
x � PR

y

� ��1

ER
I

� �T
PR
y

� �
� RR

� �
¼ PR

x � PR
y

� ��1

� Ik

� �
ER
I

� �T � Ik
h i

ðPR
y � RRÞ.
Note that the unknown penalty matrices above are PL
y , R

L, and RR. However, PR
y is known.
2.3. Stable interface treatment

Define the norms NL = PL � Ik and NR ¼ ðPR
x � PR

y Þ � Ik, where NL = (NL)T > 0 and NR = (NR)T > 0.
Moreover, define an inner product and a norm for discrete real vector-functions a; b 2 Rn by
ða; bÞH ¼ aTHb; kak2H ¼ ða; aÞ; H ¼ HT > 0. ð12Þ
We apply the energy method by multiplying (9) and (10) with uTNL and vTNR, respectively, which
yields:
uTNLut þ uTðQL
x � AÞuþ uTðQL

y � BÞu ¼ uTNL � SATL þ uT½ðEL
I Þ

T � Ik�ðPL
y � RLÞðuI � vIÞ; ð13Þ

vTNRvt þ vTðQR
x � PR

y � AÞvþ vTðPR
x � QR

y � BÞv ¼ vTNR � SATR þ vT½ðER
I Þ

T � Ik�ðPR
y � RRÞðvI � uIÞ.

ð14Þ
By adding the transposes of (13) and (14), and using (7), (11), and (12) we get:
d

dt
ðkuk2NLÞ ¼ �uTðY � AÞu� uTðX � BÞuþ 2uTNL � SATL þ uT EL

I

� �T � Ik
h i

PL
y � RL

� �
ðuI � vIÞ

þ ðuI � vIÞT PL
y � RL

� �T

EL
I

� �T � Ik
h iT

u; ð15Þ
d

dt
ðkvk2NRÞ ¼ �vT DR

x � PR
y � A

� �
v� vT PR

x � DR
y � B

� �
vþ 2vTNR � SATR

þ vT ER
I

� �T � Ik
h i

PR
y � RR

� �
ðvI � uIÞ þ ðvI � uIÞT PR

y � RR
� �T

ER
I

� �T � Ik
h iT

v. ð16Þ
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In (15), we will use the relation (8) that leads to:
/TY/ ¼
X

i2oX=Interface
/2

iDyi þ
X

i2Interface
/2

iDyi ¼ /T
BP

B
y/B þ /T

I P
L
y /I ; ð17Þ

/TX/ ¼ �
X

i2oX=Interface
/2

iDxi þ
X

i2Interface
/2

iDxi ¼ /T
BP

B
x/B þ /T

I P
L
x/I ; ð18Þ
where /B and /I are vectors located at the boundary and interface points, respectively. It is obvious that
PB
x ; PB

y ; PL
x ; and PL

y are diagonal matrices.
Recall that ððEL

I Þ
T � IkÞT ¼ EL

I � Ik and ðEL
I Þ

T � Ik ¼ ðEL
I � IkÞT since Ik is the identity matrix. The terms

in (15) can be written:
uTðY � AÞu ¼ uTB PB
y � A

� �
uB þ uTI PL

y � A
� �

uI ;

uTðX � BÞu ¼ uTB PB
x � B

� �
uB þ uTI PL

x � B
� �

uI ;

uT EL
I

� �T � Ik
h i

PL
y � RL

� �
ðuI � vIÞ ¼ uTI PL

y � RL
� �

ðuI � vIÞ;

ðuI � vIÞTðPL
y � RLÞT½ðEL

I Þ
T � Ik�Tu ¼ ðuI � vIÞT½PL

y � ðRLÞT�uI .

ð19Þ
The terms at the right-hand side of (16) can be written:
vT DR
x � PR

y � A
� �

v ¼ �vTI PR
y � A

� �
vI þ vTE PR

y � A
� �

vE;

vT PR
x � DR

y � B
� �

v ¼ �vTS PR
y � B

� �
vS þ vTN PR

y � B
� �

vN ;

vT ER
I

� �T � Ik
h i

PR
y � RR

� �
ðvI � uIÞ ¼ vTI PR

y � RR
� �

ðvI � uIÞ;

ðvI � uIÞT PR
y � RR

� �T

ER
I

� �T � Ik
h iT

v ¼ ðvI � uIÞT PR
y � ðRRÞT

h i
vI ;

ð20Þ
where vE, vS, vN denote the solution on the east, south and north boundaries (see Fig. 1).
In the following we assume that the terms including uB, vE, vS, vN at the outer boundaries are precisely

cancelled by the SAT terms (see [2,5,20]). Note that PL
x ¼ 0 since Dxi = 0 at the interface and that

PL
y and PR

y are diagonal matrices of the same size.
By using (19) and (20), the energy estimate becomes
d

dt
kuk2NL þ kuk2NR

� �
¼ ½uI ; vI �TMI ½uI ; vI �; ð21Þ
where
MI ¼
�PL

y � Aþ PL
y � RL þ PL

y � ðRLÞT �PL
y � RL � PR

y � RR

�PL
y � RL � PR

y � RR PR
y � Aþ PR

y � RR þ PR
y � ðRRÞT

" #
.

We need MI to be negative semi-definite for stability. Consider a simplified case where,
PL
y ¼ PR

y ¼ Py ; RL ¼ ðRLÞT; RR ¼ ðRRÞT. ð22Þ

This yields
MI ¼ Py �
�Aþ 2RL �RL � RR

�RL � RR Aþ 2RR

" #
¼ Py �M .
To obtain stability M has to be negative semi-definite. We can diagonalize A by XTAX = K, where X is an
orthogonal matrix consisting of the eigenvectors of A. Moreover, consider penalty parameters RL and RR of
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the form XTRLX = KL and XTRRX = KR. Denote by ki the ith diagonal component of K and similarly
kLi and kRi for KL and KR. Then we obtain a negative semi-definite M if:
kRi ¼ kLi � ki; ð23Þ

kLi 6
ki
2

ð24Þ
for i = 1, . . . ,k.

Remark. Eq. (23) is recognized as the condition for a conservative interface treatment. The condition (24)
leads to stability if conservation is guaranteed via (23). For more details, see [5,20].

We have proved the following proposition,

Proposition 2.1. If the conditions (22)–(24) hold, (21) leads to a bounded energy and (9), (10) have a stable

and conservative interface treatment.

We can also prove,

Proposition 2.2. The eigenvalues of M are 2ð2kLi � kiÞ ði ¼ 1; . . . ; kÞ and k duplicative zeros.

Proof. Inserting RL = XKLXT and RR = XKRXT = X(KL � K)XT into matrix M, we have
M ¼ X ð2KL �KÞX T �X ð2KL �KÞXT

�X ð2KL �KÞX T X ð2KL �KÞX T

" #
¼ X ð2KL �KÞXT �

1 �1

�1 1

� �

¼ X ð2KL �KÞX T �
� 1ffiffi

2
p � 1ffiffi

2
p

� 1ffiffi
2

p 1ffiffi
2

p

" #
0 0

0 2

� � � 1ffiffi
2

p � 1ffiffi
2

p

� 1ffiffi
2

p 1ffiffi
2

p

" #( )

¼ X �
� 1ffiffi

2
p � 1ffiffi

2
p

� 1ffiffi
2

p 1ffiffi
2

p

" #( )
ð2KL �KÞ �

0 0

0 2

� �� �
X T �

� 1ffiffi
2

p � 1ffiffi
2

p

� 1ffiffi
2

p 1ffiffi
2

p

" #( )

¼ XMKMX T
M ; XM ¼ X �

� 1ffiffi
2

p � 1ffiffi
2

p

� 1ffiffi
2

p 1ffiffi
2

p

" #
; KM ¼

0k 0k

0k 2ð2KL �KÞ

� �
.

In the equation above, 0k is an k · k matrix of zeros, XM is the matrix consisting of the eigenvectors of M
and KM is the diagonal matrix of eigenvalues of M. Hence the eigenvalues of matrix M are
2ð2kLi � kiÞ ði ¼ 1; . . . ; kÞ and k duplicative zeros. h

Remark. If (23) holds, the maximal eigenvalue of M is zero, i.e., M is negative semi-definite.
The specific SBP operators that are based on diagonal norms are given in [3,19]. When we use the sec-

ond-order diagonal norm PR
y ¼ diag½1=2; 1; . . . ; 1; 1=2�=h on the right subdomain, we do not need

to change the control volume since PL
y ¼ PR

y . But the standard fourth- and sixth-order diagonal norms are
1

h

17
48

59
48

43
48

49
48

1

. .
.

2
6666666664

3
7777777775
;

1

h

13649
43200

12013
8640

2711
4320

5359
4320

7877
8640

43801
43200

1

. .
.

2
666666666666664

3
777777777777775

; ð25Þ
respectively. In both cases, we need to modify the control volume for the UFVM at the points on the
interface to guarantee PL

y ¼ PR
y . The old dual grid for the points at the interface consists of the lines between
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the center of the triangles and the midpoints of the edges. In order to match PL
y and PR

y , the new lines will
connect the center of the triangles and the points at the interface which correspond to the PR

y , see Fig. 3.
3. Numerical experiments

Consider the scalar advection equation,
ut þ aux þ buy ¼ 0; �1 6 x 6 1; 0 6 y 6 1; b > 0; ð26Þ

where the exact solution is u(x,y,t) = f(x,y,t) = sin(2p(x/a + y/b � 2t)). As initial data, we use u(x,y,0) =
f(x,y,0). For a > 0, we use the boundary conditions u(x,0,t) = f(x,0,t), u(�1,y,t) = f(�1,y,t), while we
replace u(�1,y,t) = f(�1,y,t) with u(1,y,t) = f(1,y,t) for a < 0.

The problem (26) is a special case of the hyperbolic system we analyzed above. However, the main
difficulties are the same; namely to get the accuracy by co-locating points on the interface and stability
by choosing the finite volume norm and penalty parameters correctly.
3.1. Eigenvalue analysis

By the previous analysis we know that the long-time behavior for the hybrid method is determined by the
eigenvalues of interface matrixM. Consider a case where the left subdomain has an unstructured mesh with
704 nodes and the right subdomain has a structured mesh with 21 · 21 grid points (see Fig. 1). The



Fig. 4. Spectra of the interface matrix M. (a) PL
y ¼ PR

y , R
L = 1/2 and RR = �1/2; (b) PL

y ¼ PR
y , R

L = 0 and RR = �1.

Fig. 5. Spectra of the interface matrix M. (a) PL
y ¼ PR

y , R
L = 0 and RR = �2; (b) PL

y 6¼ PR
y , R

L = 0 and RR = �1.
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HOFDM with the sixth-order SBP operator is used on the right subdomain. Let a = 1, b = 2 and PL
y ¼ PR

y .
We consider two cases: RL = 1/2, RR = �1/2 and RL = 0, RR = �1. For both cases, (22)–(24) are satisfied.
In Fig. 4, we can see that all eigenvalues are located in the left half of the complex plane (including the zero
eigenvalues). However, if one or more of the stability conditions cannot be guaranteed, some of eigenvalues
might get positive real parts (see Fig. 5). These eigenvalues will lead to exponential time-growth and (unless
they are of OðhÞ) an unstable scheme.

3.2. One domain calculation

In this section, we test how efficient and accurate the high-order SBP operator is on one domain. We
start by defining the rate of convergence, q, on the computational domain as
q ¼
log10 ku� vð1Þk2=ku� vð2Þk2

� �
log10

ffiffiffiffiffiffiffiffi
N ð1Þ

p
=

ffiffiffiffiffiffiffiffi
N ð2Þ

p� � ;
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where u is the exact solution. v(1) and v(2) are the corresponding numerical solutions on meshes with N(1) and
N(2) nodes (including boundary nodes), respectively.

The convergence rate for both HOFDM and UFVM on one domain are displayed in Table 1. The struc-
tured mesh is refined from 861 to 125,751 nodes. We use the classical fourth-order Runge–Kutta method
for the time integration. A small time-step is used to minimize the temporal errors.

The convergence rates for the second-, fourth- and sixth-order schemes are 2, 3 and 4, respectively.
Those results are in line with the theory in [21–23], since we use diagonal norms that lead to first-,
second- and third-order accuracy at the boundaries. The convergence rate for the UFVM is 2 on
the structured symmetric mesh. One can prove that the UFVM is at least first-order accurate on a
general triangular mesh.

The UFVM requires 5 flops at an edge that connects two nodes for the computation of a gradient in two
dimensions. On a cartesian mesh, the number of edges are twice the number of nodes which means that
10 + 10 + 1 = 21 flops are required for the computation of the sum of the x and y gradients at a node point.
The second-, fourth- and sixth-order finite difference method requires 3 + 3 + 1 = 7, 6 + 6 + 1 = 13 and
9 + 9 + 1 = 19 flops for the same task.

Note that log(L2 � error) is �2.64 for the UFVM scheme on a fine mesh of 29,161 nodes and approx-
imately �2.66 for the fourth- and sixth-order HOFDM on a coarse mesh of 861 nodes. The second-order
finite difference scheme has a log(L2 � error) of �2.61 for 7381 nodes. The operation count above implies
that all the HOFDMs are more accurate and efficient than the UFVM. For high accuracy requirements, the
sixth-order method is of course the most efficient.

Figs. 6 and 7 show the results for HOFDM with sixth-order SBP operator at T = 1 on one domain. The
calculations have a log(L2 � error) of �2.67 on a mesh with 861 nodes and �3.84 on a mesh with 3321
nodes. On the same mesh, the numerical solution for the UFVM is displayed in Fig. 8. Note the significant
difference in error levels.

3.3. Two subdomains with an interface

Next, we will illustrate the efficiency of the hybrid method. We calculate on two subdomains with an
interface at x = 0. First, we apply the UFVM on an unstructured mesh in both subdomains. Next, we
use the UFVM on the same mesh in the left subdomain and the HOFDM on a structured mesh in the right
subdomain. Finally, we reduce the number of grid points in the right subdomain until we obtain a similar
L2 � error in both subdomains.

The mesh enlargement is done in the x-direction only and Dy is kept constant. As previously shown,
stability and accuracy require that the finite volume and finite difference solutions are co-located at the
interface.
Table 1
Convergence rates of approximations to ut + ux + 2uy = 0 on one domain

Nodes HOFDM (2nd) HOFDM (4th) HOFDM (6th) UFVM

Error q Error q Error q Error q

861 �1.65 �2.66 �2.67 �1.06
3321 �2.26 2.07 �3.59 3.17 �3.84 4.00 �1.69 2.13
7381 �2.61 2.03 �4.13 3.09 �4.55 4.12 �2.04 2.05

13,041 �2.86 2.02 �4.51 3.06 �5.06 4.11 �2.29 2.02
20,301 �3.06 2.02 �4.80 3.06 �5.46 4.11 �2.49 2.02
29,161 �3.21 2.01 �5.04 3.02 �5.78 4.05 �2.64 2.00
37,950 �3.33 2.03 �5.21 2.98 �6.01 4.05 �2.75 1.91
125,751 �3.85 2.01 �6.00 3.02 �7.07 4.06 �3.27 1.99



Fig. 7. HOFDM with sixth-order SBP operators used on the whole computational domain with 3321 nodes and
log(L2 � error) = �3.84.

Fig. 6. HOFDM with sixth-order SBP operators used on the whole computational domain with 861 nodes and
log(L2 � error) = �2.67.
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Table 2 shows that the rate of convergence for the UFVM is less than 2 on unstructured, unsymmetrical
meshes. The log(L2 � error) is �3.16 for UFVM scheme on the finest mesh with 138,113 nodes. To obtain
the same error level we need a mesh with 93,447 and 79,377 nodes for the two hybrid methods, respectively.
We can also see that in the sixth-order case only one sixth of the nodes are required for the HOFDM.

In the calculations shown in Fig. 9, we have used 2807 grid points in the left subdomain and 861 in the
right subdomain. The major part of the error in Fig. 9 is created in the left domain (with the fine mesh and
low accuracy) and advected into the right domain (with the coarse mesh and high accuracy).

In the previous calculations, the left subdomain with the unstructured mesh can be considered a
modelling the source field while the right subdomain with the structured mesh can be considered as the
wave propagation domain. The previous numerical results illustrate the efficiency of the hybrid method
when waves propagate from the source to the far field.



Table 2
Convergence rates of approximations to ut + ux + 2uy = 0 on two subdomains

UFVM (whole domain) Hybrid (UFVM + HOFDM (2nd)) Hybrid (UFVM + HOFDM (6th))

Nodes Error q Nodes Error q Nodes Error q

1410 �1.39 1145 (704 + 441) �1.34 1019 (704 + 315) �1.36
5569 �1.94 1.84 4488 (2807 + 1681) �1.91 1.92 3396 (2807 + 1189) �1.94 1.96

22,331 �2.49 1.82 17,700 (11,139 + 6561) �2.47 1.88 14,460 (11,139 + 3321) �2.48 1.93
78,543 �2.97 1.76 54,370 (39,119 + 15,251) �2.98 2.09 46,820 (39,119 + 7701) �2.98 1.96
138,113 �3.16 1.56 93,447 (69,126 + 24,321) �3.16 1.54 79,377 (69,126 + 10,251) �3.16 1.57

Fig. 8. UFVM used on the whole computational domain with 3321 nodes and log(L2 � error) = �1.69.

Fig. 9. log(L2 � error) = �1.87 on the left domain with 2807 nodes and log(L2 � error) = �2.22 on the right domain with 861 nodes
for ut + ux + 2uy = 0.
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It is also of interest to investigate the efficiency of the method for waves propagating from the far field to
the source. To illustrate this, consider equation ut � ux + 2uy = 0 with initial and boundary conditions as
described below Eq. (26).
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The calculations are shown in Fig. 10. We obtain similar error levels as we did for the previous case on
coarse meshes (see Table 3). However, for fine meshes, only one eleventh of the nodes are used for the
HOFDM in the sixth-order case. This implies that the efficiency of the hybrid method is even better in this
case.

The hybrid method is intended for problems where one needs the UFVM in a relatively small part of the
computational domain. To estimate the efficiency of the hybrid method we therefore consider a case with
one domain (of unit size) where UFVM is used is coupled in the x-direction to l such unit domains where
HOFDM is used (see Fig. 13 below). We compare that calculation with a case where UFVM is used on the
whole (l + 1 unit domains large) computational domain. We estimate the efficiency for large l as
Fig. 10
nodes

Table
Conve

UFVM

Nodes

141
556

22,33
78,54
138,11
Efficiency ¼ lim
l!1

l� NHOFDM þ NUFVM

ðlþ 1Þ � NUFVM

¼ NHOFDM

NUFVM

; ð27Þ
where NHOFDM and NUFVM denote the number of flops for the finite difference and finite volume calcula-
tion, respectively.

For a triangular mesh, the number of edges are three times the number of nodes. This means that
15 + 15 + 1 = 31 flops per node are required for the UFVM computation of the sum of the x and y

gradients. As mentioned above, the second-order and sixth-order finite difference methods require 7 and
19 flops, respectively, for the same task.
. log(L2 � error) = �1.98 on the left subdomain with 2807 nodes and log(L2 � error) = �2.42 on the right subdomain with 861
for ut � ux + 2uy = 0.

3
rgence rates for approximations to ut � ux + 2uy = 0 on two subdomains

(whole domain) Hybrid (UFVM + HOFDM (2nd)) Hybrid (UFVM + HOFDM (6th))

Error q Nodes Error q Nodes Error q

0 �1.36 1019 (704 + 315) �1.35 977 (704 + 273) �1.43
9 �1.96 2.01 4078 (2807 + 1271) �1.96 2.02 3422 (2807 + 615) �1.94 1.87
1 �2.49 1.76 15,270 (11,139 + 4131) �2.47 1.78 12,840 (11,139 + 1701) �2.50 1.95
3 �2.96 1.72 51,350 (39,119 + 12,231) �2.97 1.90 43,800 (39,119 + 4681) �2.97 1.76
3 �3.15 1.58 92,241 (69,126 + 23,115) �3.15 1.43 75,357 (69,126 + 6231) �3.15 1.57
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In Figs. 11 and 12, we can see the result where we for simplicity have used the data (number of flops)
from Tables 2 and 3, respectively. Both hybrid methods are more efficient than the UFVM method. Due
to the low operation count, the hybrid using the second-order finite difference method is very efficient.
For a vanishing grid-size, the hybrid using the sixth-order finite difference method will be the most efficient
choice.

Note that the efficiency gain discussed above is almost ‘‘one-dimensional’’ due to the mesh refine-
ment in the x-direction only. That limitation is due to the fact that we need co-located nodes at
the interface. For a more multi-dimensional case (which will appear in most applications), for example
with the UFVM in a convex domain surrounded by a structured mesh, even more efficiency can be
gained.

Next, we consider the hybrid method on the large domain [�1,10] · [0,1] at t = 10. Only 6948 grid points
are required to obtain the error level �2.14, see Fig. 13. To reach the same error level we need 30,824 grid
points when using the UFVM.
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Fig. 11. Estimated efficiency for rightgoing waves, the ‘‘source to far field’’ case.
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Fig. 12. Estimated efficiency for leftgoing waves, the ‘‘far field to source’’ case.



Fig. 14. Unstructured mesh for the airfoil.

Fig. 13. The total log(L2 � error) = �2.14 for ut + ux + 10uy = 0. log(L2 � error) = �2.20 on the left subdomain [�1,0] · [0,1] with
2807 nodes and log(L2 � error) = �2.13 on the right subdomain [0,10] · [0,1] with 101 · 41 nodes.
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3.4. Complex geometry

The UFVM works well on unstructured grids in complex geometries. To illustrate that, we exclude a
part of the left subdomain shaped like a NACA0012 airfoil with length 0.2. The unstructured mesh easily
handles the geometrical complexity, see Fig. 14. To decide whether we have inflow or outflow on the airfoil,
we consider the sign of ða; bÞ � n̂. We specify u on an inflow boundary where ða; bÞ � n̂ < 0. Note that the unit
outward-pointing normal n̂, points into the airfoil shaped cut-out. On an outflow boundary where
ða; bÞ � n̂ P 0 we do not impose any boundary conditions.

The UFVM is used on the left subdomain while the HOFDM is used on the right. The calculations
for waves propagating from the lower-left corner and the lower-right corner are displayed in Figs. 15
and 16, respectively. In both cases, the airfoil shaped cut-out does not introduce a significant amount
of error.
4. Extensions to three dimensions and parabolic problems

The hybrid method described in this paper can be extended to three dimensions by interfacing hexahedra
from the structured side with pyramids on the unstructured side. Stability is obtained by modifying the
corresponding two-dimensional finite volume norm (choose the dual grid properly) to match the two-
dimensional finite difference norm.



Fig. 15. Waves propagating from lower-left corner. log(L2 � error) = �1.99 on the left domain with 3172 nodes and
log(L2 � error) = �2.27 on the right domain with 861 nodes.

Fig. 16. Waves propagating from lower-right corner. log(L2 � error) = �1.99 on the left subdomain with 3172 nodes and
log(L2 � error) = �2.42 on the right subdomain with 861 nodes.
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Parabolic or incompletely parabolic problems (e.g., the Navier–Stokes equations) with second deriva-
tives do not present a major problem for this technique. All the essential steps are in principal included
and discussed in this paper. The additional difficulties for parabolic problems are of a more general nature
(more complex algebra, additional stiffness, time step limitations, accuracy of penalty terms at the interface,
etc.) and are not coupled to this specific procedure.

To maintain uniform accuracy and avoid reflections in the near interface region is very important in
many applications. To accomplish that one can adjust the stretching on the structured mesh side, the size
of the finite volumes on the unstructured side and the order of accuracy on both sides to arrive at compa-
rable accuracy.
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5. Conclusions

A stable hybrid method for hyperbolic problems that combines the unstructured finite volume method
with the high-order finite difference method has been developed.

The main tools in the development of the stable interface procedure were the use of SBP operators, weak
imposition of interface conditions and the energy method. The stability at the interface was obtained by
modifying the dual grid of the unstructured finite volume method close to the interface.

The calculations show that the hybrid method is efficient and accurate. The numerical experiments sup-
port that the interface treatment is truly stable.

Extensions to three dimensions and parabolic problems have been discussed.
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